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By means of two-dimensional contact dynamics simulations, we analyze the vibrational dynamics of a
confined granular layer in response to harmonic forcing. We use irregular polygonal grains allowing for strong
variability of solid fraction. The system involves a jammed state separating passive �loading� and active
�unloading� states. We show that an approximate expression of the packing resistance force as a function of the
displacement of the free retaining wall from the jamming position provides a good description of the dynamics.
We study in detail the scaling of displacements and velocities with loading parameters. In particular, we find
that, for a wide range of frequencies, the data collapse by scaling the displacements with the inverse square of
frequency, the inverse of the force amplitude, and the square of gravity. Interestingly, compaction occurs during
the extension of the packing, followed by decompaction in the contraction phase. We show that the mean
compaction rate increases linearly with frequency up to a characteristic frequency and then it declines in
inverse proportion to frequency. The characteristic frequency is interpreted in terms of the time required for the
relaxation of the packing through collective grain rearrangements between two equilibrium states.
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I. INTRODUCTION

Depending on the frequency and amplitude of accelera-
tions, vibrated granular materials give rise to various phe-
nomena such as compaction �1,2�, convective flow �3–5�,
size segregation, and standing-wave patterns at the free sur-
face �3,6,7�. Particle rearrangements induced by vibrations
lead to lower shear strength and larger flowability. In the full
fluidization regime, there are no permanent contacts between
particles and the system behaves as a dissipative gas �8�.
Particle-bed reactors are sometimes fluidized by this method
instead of upward gas flow �9�. When particle accelerations
remain below the gravitational acceleration, the system
keeps its static nature and the vibrational energy propagates
through a rather compact network of interparticle contacts.
This leads to enhanced bulk flow in hoppers and chutes
�10,11�.

On the other hand, vibrations at high frequency and low
amplitude lead to slow �logarithmic� decay of the pore space
as a function of time �5�. Efficient vibrocompaction of dry
and wet granular materials is a crucial issue in numerous
applications, such as the casting of fresh concrete. The tamp-
ing operation on railway ballast is another example where
the vibrations of tamping bars are used to restore the initial
geometry of the track distorted as a result of ballast settle-
ment �12–14�. The maintenance cost becomes crucial with
the increase of commercial speed.

We may distinguish two methods for inducing vibrational
dynamics: �1� by imposed cyclic displacements of a wall or
the container �shaking� and �2� by cyclic modulation of a
confining stress. The first method has been used in most
experiments on granular beds �15–20�. In this case, the con-

trol parameters are the amplitude a and the frequency � of
the vibrations corresponding to a maximal acceleration a�2

where �=2��. When a material is molded inside a closed
box, the vibrations should rather be induced by varying a
confining force, e.g., a force acting on a wall. Then, the
amplitude of displacements is a function of the forcing fre-
quency, and the level of particle accelerations depends on
both the applied cyclic force and the reaction force of the
packing. In any case, an efficient compaction process re-
quires periods of release of the packing so that the grains can
move with respect to their neighbors.

In this paper, we explore such a system where a harmonic
force f is exerted on a vertical wall of a box, all other walls
remaining immobile. The force f is varied between zero and
a maximum value fmax. During a period, f is large enough to
equilibrate the packing reaction force except for a short lapse
of time when f declines to zero. Then, the packing can flow
under the action of its own weight, pushing the retaining wall
away. We are interested here in the evolution of the packing
in the course of harmonic loading and its scaling with load-
ing parameters �frequency, force maximum�.

We used numerical simulations by the contact-dynamics
approach as a discrete element method �DEM� in a two-
dimensional geometry with a small number of particles
�21,22�. Each simulation is repeated for several independent
configurations and the results are analyzed in terms of
ensemble-average behaviors. The particles are rigid and
polygon-shaped. We focus on the displacements of the free
retaining wall and the compaction of the packing. Most re-
sults presented below concern the short-time behavior where
the solid fraction increases linearly with time. The frequency
is varied from 1 to 60 Hz and its influence is analyzed by
considering characteristic times involved in the loading and
unloading intervals of time. We first introduce the numerical
procedures. Then, we present the main findings concerning
the passive and active dynamics, the evolution of the solid*Electronic address: azema@lmgc.univ-montp2.fr
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fraction, and scaling with the loading parameters.

II. NUMERICAL PROCEDURES

The simulations were carried out by means of the contact-
dynamics �CD� method with irregular polygonal particles
�21,22�. The CD method is based on implicit time integration
of the equations of motion and a nonsmooth formulation of
mutual exclusion and dry friction between particles. This
method requires no elastic repulsive potential and no
smoothing of the Coulomb friction law for the determination
of forces. For this reason, the simulations can be performed
with large time steps compared to molecular-dynamics simu-
lations. We used LMGC90, which is a multipurpose software
developed in our laboratory, capable of modeling a collection
of deformable or undeformable particles of various shapes by
different algorithms �23�.

The samples are composed of irregular pentagons, hexa-
gons, and heptagons of three different diameters: 50% of
diameter dmin=2.5 cm, 34% of diameter 3.75 cm, 16% of
diameter dmax=5 cm; see Fig. 1. The particles are initially
placed on a square network in a rectangular box and com-

pressed by a downward motion of the upper wall �wall C in
Fig. 1� at zero gravity. Then, the gravity is set to g and the
upper wall is raised 1 cm and fixed. The right wall �wall D in
Fig. 1� is allowed to move horizontally �x direction� and
subjected to a driving force:

f�t� =
�fmax + fmin�

2
−

�fmax − fmin�
2

sin �t , �1�

where fmax and fmin are the largest and lowest compressive
�positive� forces acting on the wall.

If fmin is above the �gravitational� force exerted by the
grains on the free wall, f will be large enough to prevent the
wall from backward motion during the whole cycle. In other
words, the granular material is in a “passive state” in the
sense of Rankine’s states and the major principal-stress di-
rection is horizontal �24�. In this limit, no extension will
occur following the initial contraction. On the other hand, if
fmax is below the force exerted by the grains, f will never be
large enough to prevent the extension of the packing. This

FIG. 1. �Color online� The geometry of the packing.
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FIG. 2. �Color online� The evolution of the displacement x of
the free wall �up� in response to harmonic loading �down�.
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FIG. 3. A zoom on a single period �see Fig. 2�.
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FIG. 4. �Color online� The force fg exerted by the grains and the
driving force f on the free wall as a function of time t.
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corresponds to the “active state” where the major principal-
stress direction remains vertical. In all other cases, both con-
traction and extension occur during each period, and the dis-
placement �x of the free wall will be controlled by fmin. In
the simulations reported below, we set fmin=0. This ensures
the largest possible displacement of the wall in the active
state. We used four different values of fmax ranging from 5
�103 N to 2�104 N.

The simulations were carried out with Np=95 grains in
the box and each simulation was repeated with seven inde-
pendent grain configurations. The mean behavior for each set
of parameters is obtained by ensemble averaging over seven
independent data sets. Larger samples can be simulated, but
that requires much more computational effort for a paramet-
ric study over many cycles. We checked that the dynamics
and the scaling behavior remain basically the same in
samples containing four times more particles than the
samples studied in this paper. This point will be briefly illus-
trated in Sec. VI.

Thus, our system represents a rather thin granular layer.
The coefficient of friction between the grains and with the
horizontal walls was fixed to 0.4, but it was 0 at the vertical
walls. With a time step equal to 2.5�10−4 s, we could per-

form high-quality simulations in which the largest cumula-
tive error on grain positions was below 1%.

III. ACTIVE AND PASSIVE DYNAMICS

We first consider the motion x�t� of the free wall �wall D
in Fig. 1�, which reflects the dynamics of the grains in the
cell in response to harmonic forcing. Figure 2 shows x�t�
�averaged over seven independent simulations� for frequency
�=5 Hz over a time interval �t=1 s. We distinguish a fast
initial contraction �t�0.1 s� followed by slow contraction
�decreasing x� over four periods. The initial contraction is a
consequence of the gap left between the free surface of the
packing and the upper wall. This initial volume change is
almost independent of frequency. The subsequent periodic
motion of the wall takes place around this confined state and
will be the focus of this paper.

A zoom on a single period is shown in Fig. 3. The period
begins at the jamming position x=xj corresponding to the
jamming position reached in the preceding period. The mo-
tion of the wall begins �point a in Fig. 3� only when the
applied force f declines near to its minimum fmin=0. The
maximum displacement �xmax occurs at a later time �tr
�point b�. From a to b, the force exerted by the packing on
the free wall is above the applied force, so that the wall
moves backward �extension�. In this phase, the packing is in
an active state. The inverse situation prevails from b to c
where the grains are pushed towards the box �contraction�.
Then, the packing is in a passive state. The new jamming
position xj� is below the jamming position xj reached at the
end of the preceding period. The difference xj −xj� represents
the net compaction of the packing over one period. For a
given frequency �, the phase difference �tr is the same for all
periods. The displacement amplitude �xmax is a function of
fmax and �, as we shall see below.

The motion of the free wall is governed by the equation of
dynamics,

f − fg = mwẍ , �2�

where fg is the horizontal force exerted by the packing on the
wall and mw is the mass of the wall �Fig. 1�. Figure 4 dis-
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FIG. 5. Force fg exerted by the grains on the free wall as a
function of displacement x �a� and the velocity v �b�.

FIG. 6. �Color online� Particle displacements over one
period.
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plays fg as the function of time for fmax=2�104 N. We see
that fg follows closely the variations of f . In particular, in the
jammed state we have f = fg so that ẍ=0 in this state. This
means that, in its most general form, fg is a function of f .

Figure 5�a� shows fg vs x over four periods. In the active
phase, fg grows slightly with x. In the passive phase, it grows
faster and almost linearly as x decreases. The vertical line
corresponds to the jammed state where fg decreases with f at
x=xj. We also clearly observe in Fig. 5�a� two transients: �1�
unjamming and the onset of the active state and �2� jamming
from the passive state. It is remarkable that, although xj de-
creases at the end of each period, the dynamics remains self-
similar up to a translation along displacement coordinates.

Figure 5�b� displays fg as a function of the velocity v
� ẋ. We again observe the passive �v�0� and active �v
�0� states together with the jamming and unjamming tran-
sients before and after the jammed state �v=0 and x=xj�. The
data from all periods follow the same variations except for
the jamming transient where a slight decrease of the maxi-
mum negative velocity vmax can be noticed in each period.

Although we focus here on the average dynamics of the
packing, i.e., the displacements of the free wall, it is impor-
tant to note that the grain-velocity field is not a simple oscil-
lation around an average position. The grains undergo a

clockwise convective motion in the cell as shown in Fig. 6.
On the other hand, the contact forces evolve between a fully
jammed state, where nearly horizontal-force chains dominate
�Fig. 7�a��, and the active state, where nearly vertical gravity-
induced chains can be observed �Fig. 7�b��.

IV. SIMPLE MODEL

To predict the motion of the free wall from Eq. �2�, we
need to express the force fg as a function of x and v. It is
obvious that in the jammed state at x=xj, the force fg is a
reaction force balancing exactly the driving force f , so that
v=0. On the other hand, the inertia effects are small com-
pared to static forces. To show this, we may use a dimen-
sionless number I defined by �25�:

I = 	̇�m

p
, �3�

where 	̇= ẋ /x is the deformation rate, m is the total mass of
particles, and p is the average pressure. We find that, even for
our largest frequencies, we have I�0.02. This implies that fg
should not depend crucially on v. Let us note that the plot of
fg vs v in Fig. 5�b� does not represent the explicit depen-
dence of fg on v; it is a consequence of the equation of
dynamics and, as we shall see below, it can be reproduced by
assuming that fg is independent of v.

We now introduce a simple model in which the expression
of fg as a function of x is extracted from the numerical data
plotted in Fig. 5�a�. As shown in Fig. 8, two distinct fitting
forms should be considered for the active and passive states.
Ignoring the jamming and unjamming short transients, an
exponential form provides a nice fit for the active branch,
whereas a linear fit is a fairly good approximation in the
passive state. Formally, we have

fg = � 
 + �ek�x−xj�, active


� + ���1 + k��x − xj�	 , passive,
�4�

with
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FIG. 7. �Color online� Normal forces in the passive �a� and
active �b� states. Line thickness is proportional to the force.
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 = �f3 − f1ek�xmax�/�1 − ek�xmax� ,

� = �f1 − f3�/�1 − ek�xmax� ,


� = �f2�1 + k��xmax� − f3�/�k��xmax� ,

�� = �f3 − f2�/�k��xmax� . �5�

The constant forces f1, f2, and f3 correspond to the values of
fg at the unjamming transient, the jamming transient, and the
point of transition from active to passive states, respectively
�see Fig. 8�. Clearly, because of the action of gravity and the
jamming transition, we have f1� fmin and f2� fmax.

We substitute the expression �4� in Eq. �2� and we solve
for x. An analytical solution can be obtained for the passive
linear part. An approximate solution can be given also for the
active part by expending the exponential function to leading
order. Figure 9 shows the evolution of the position x for one
period together with the solution of the model.

The parameters k and k� are adjusted in order to get the
best fit for the plot. The continuity of the fit at a transition
between passive and active states is ensured by the very
choice of the coefficients according to Eq. �5�. Although we
did not take into account the transients, the analytical plot
correctly fits the data.

Figure 10 displays fg vs v for one period, together with
the analytical fit obtained as a solution to Eq. �2� with the
expression �4� of fg as a function of x. Again, excluding
jamming and unjamming transients, the analytical solution
provides a fairly good approximation for the simulation data
although the largest contraction velocity is underestimated in
the passive state.

The model parameters k and k� remain nearly the same
over all periods. This means that the dynamics at short times
��t�1 s� is weakly dependent on the solid fraction. The
parameters k and k� change, however, with loading param-
eters ��, fmax, etc.� unless the displacements and the forces
f1, f2, and f3 are scaled with these parameters.

V. COMPACTION

In order to evaluate the solid fraction �, we consider a
control volume enclosing a portion of the packing inside the
simulation cell. This volume does not include the initial gap
between the top of the packing and the upper wall. The initial
value of the solid fraction is 0.75 and, since the grains are
angular-shaped, its variations �� from the initial state are
large.

Figure 11 shows the evolution of �� for several periods.
We observe an initial compaction of 3% occurring in 0.1 s.
The subsequent evolution of the solid fraction takes place in
a more compact state with a small increase in each period.

We use �0=0.77 at the end of the first period as the ref-
erence value for solid fraction. The relative compaction of
the packing is given by �� /�0. The compaction rate 
̇ over
several periods and for a total time interval �t is


̇ �
1

�0

��

�t
. �6�
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FIG. 9. �Color online� Displacement x of the free wall as a
function of time �full line� and analytical fit from the phenomeno-
logical model �dashed line�.
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FIG. 10. �Color online� Force fg exerted by the grains on the
free wall vs velocity v over one period �full line� and analytical fit
from the integration of the equation of dynamics using Eq. �4�
�dashed line�.
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FIG. 11. �Color online� Evolution of the solid fraction �� from
the initial state as a function of time over several periods.
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Figure 12 shows the jamming position xj as a function of
time for different frequencies for �t�1 s. At such short
times, it can be assumed, with a good approximation, that the
solid fraction declines linearly in time. Generally, the behav-
ior slows down logarithmically at longer times �16�. This
means that at short times, in which we are interested in this
paper, the compaction rate is nearly constant, and we have


̇ =
��1

�0
� , �7�

where ��1 is the compaction per period. For �=5 Hz and
fmax=2�104 N, we have 
̇
0.009 s−1.

Interestingly, compaction occurs in the active state, i.e.,
during the extension of the packing, and not during contrac-
tion. This is shown in Fig. 13, where the variation �� of the
solid fraction is plotted as a function of x. The solid fraction
increases during extension �increasing x� and decreases dur-
ing contraction �decreasing x�.

Compaction upon the reversal of the direction of shearing
is a well-known property of granular media �26�. Low-
amplitude cyclic shearing leads to cumulative compaction of
a granular material. At larger amplitudes, the compaction is
followed by decompaction �dilation� and no net compaction
can be observed over a full cycle. The situation is slightly
different in our system in the presence of a jammed state.
Compaction is a consequence of unjamming and it is pursued
during the whole active state. Decompaction takes place in
the passive state, but it is cut short by fast jamming. The
outcome of a full cycle is thus a net compaction of the pack-
ing.

VI. SCALING WITH LOADING PARAMETERS

In the last three sections, we analyzed the vibrational dy-
namics and compaction for a single frequency �=5 Hz.
Similar simulations were performed for several frequencies
ranging from 1 to 60 Hz. Up to a change in time and length
scales, all simulations yield similar results both for dynamics

and compaction independently of the applied frequency. This
can be seen, for example, in Fig. 14�a�, where the phase-
space trajectory is shown for �=5 Hz and �=10 Hz. Figure
14�b� shows that the data from both simulations collapse
nicely on the same curve by simply scaling the displace-
ments �x by �−2 and the velocities v by �−1.

This scaling is suggested by a dimensional analysis of the
average dynamics of the packing. The frequency � sets the
time scale �=�−1. Force scales are set by the largest driving
force fmax in the passive state and the grain weights mg as
well as the smallest driving force fmin in the active state.
Hence, dimensionally, for fixed values of mg, fmin, and fmax,
all displacements are expected to scale with �−2 and all ve-
locities with �−1. To directly check this scaling, in Fig. 15 we
have plotted the maximum displacement �xmax in the active
state and the maximum velocity vmax in the passive state as a
function of �. The corresponding fits by �−2 and �−1 are
excellent.

The influence of loading-force parameters mg, fmin, and
fmax should be analyzed separately for each regime. In the
passive state, fmax is the dominant force and it is exactly
balanced by fg in the jamming transition. On the other hand,
in the active state, mg is the dominant force as f remains
small compared to mg in this state. The maximum displace-
ment �xmax at the transition from active to passive state is
determined in a subtle way by both fmax and mg. If gravity
were the only driving force in the active state, �xmax would
simply scale with g�−2 independently of fmax. However, our
data show that �xmax varies as fmax

−1 �see Fig. 16�.
A plausible dimensional interpretation is to assume that

�xmax is controlled by the ratio mg / fmax representing the
relative importance of the gravitational-to-loading forces. On
the other hand, the mass ratio mw /m controls the inertia, and
thus the maximum displacement of the wall governed by Eq.
�2�. Varying systematically mw, we found that �xmax varies as
m / �m+mw�. Thus, we propose the following expression for
the scaling with loading forces:

0.0 0.3 0.6 0.9
t - t  (s)

-0.007

-0.004

0.000

x 
- 

x 
  (

m
)

05 Hz
15 Hz
25 Hz
50 Hz

(1)

(1
)

j
j

FIG. 12. �Color online� Evolution of the jamming position xj

from the position x�1� reached at t= t�1�=0.1 s for four different
frequencies.
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�xmax = C� m

m + mw
�� mg

fmax
�� g

�2� , �8�

where C is a dimensionless prefactor. This equation includes
the correct scaling of �xmax with the frequency �
�Fig. 15�a��, with the force fmax �Fig. 16�, and with the mass
mw of the wall.

Interestingly, Eq. �8� predicts that �xmax varies as g2. This
prediction is again in excellent agreement with our simula-
tion data shown in Fig. 17 for four different values of g.

Equation �8� implies that the prefactor C is a material
constant that remains independent of all our loading param-
eters and mw. Figure 18 shows �xmax as a function of
�mg�2 / ��m+mw��fmax�

2�� from different simulations with
different values of �, fmax, g, and mw. The data are in excel-
lent agreement with the scaling suggested by Eq. �8� with
C
0.05. Figure 18 also contains a point representing a sys-
tem of 400 particles. This point lies on the same plot with all
other points, showing that the scaling behavior does not cru-
cially depend on the system size although the jamming tran-
sition is basically controlled by the presence of the rigid
walls in all cases.

The above scaling can be incorporated in the fitting form
�4� expressing fg as a function of x−xj and three forces f1, f2,
and f3 �see Fig. 8�. In this fitting form, the displacements
should be divided by �xmax. We will not study here in detail
the dependence of f1, f2, and f3 with respect to loading force
parameters mg, fmin, and fmax. Our simulations show that f3
is independent of fmax, but it depends linearly on mg. Theo-
retically, this state corresponds to the limit-active state where
the ratio of principal stresses is a function of the internal
angle of friction �24�. On the other hand, the force f2 simply
scales as fmax, and f1 depends both on fmin and mg. In our
simulations, where fmin=0, the force f1 is close to zero.

VII. COMPACTION RATES

Equation �7� suggests that the compaction rate 
̇ should
vary linearly with the frequency � if the total compaction per
period ��1 is independent of �. Figure 19 shows 
̇ as a
function of �. We see that only at low frequencies, 
̇ in-
creases linearly with �. At larger frequencies, beyond a char-
acteristic frequency �c, 
̇ declines with �. The largest com-
paction rate 
̇max occurs for �=�c. This implies that,
according to Eq. �7�, ��1 is indeed independent of � for �
��c. The characteristic time �c��c

−1 can be interpreted as
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the minimum time lapse required for the relaxation of the
packing. In fact, in the active state, the packing needs a finite
rearrangement time �c to achieve a higher level of solid frac-
tion. As long as the period �=�−1 is longer than the relax-
ation time �c, the packing has enough time to relax fully to a
more compact state. Then, the compaction ��1 has its maxi-
mum value ��max. But, if the period � is below �c, the relax-
ation will be incomplete so that ��1���max.

Since the volume change �V is proportional to �x, ��1
follows the same scaling with the frequency as the displace-
ment of the retaining wall, i.e., ��1���max�

−2. Hence, from
Eq. �7� and imposing the continuity at �=�c, we get


̇ = 

��max

�0
� , � � �c

��max

�0
�c

2�−1, � � �c.

�9�

This form �labeled 1� is plotted in Fig. 19 together with the
data points. It is remarkable that, although �c is the only

fitting parameter, the compaction rate 
̇ is well adjusted by
Eq. �9�. The prefactor ��max /�0 is 
1.5�10−3, correspond-
ing to ��max
1.1�10−3.

The arguments behind the proposed form �9� imply a
sharp transition at �=�c. This is rather plausible in view of
the numerical data shown in Fig. 19. Nevertheless, it is con-
venient to construct a single expression containing the cor-
rect behavior both at low and high frequencies. The follow-
ing fitting form provides a good approximation as shown
also in Fig. 19 �fitting form 2�:


̇ =
��max

�0

1 + e−��/�c−1�2

1 + � �

�c
�2 � . �10�

We have �c
6 Hz corresponding to a characteristic time
�c=0.17 s. This time interval is long compared to single-
grain dynamics under gravity. For instance, the time required
for a small-sized grain in our samples to fall down a distance
equal to its diameter is about 0.002 s. Several observations
show that collective rearrangements in granular media are
often a slow process �27�. Let us finally recall that our find-
ings concern the short-time behavior ��t�1 s�. At longer
times, 
̇ declines with time, but the scaling with frequency
according to Eq. �9� is expected to hold at each instant of
evolution of the packing.

VIII. CONCLUSION

In this paper, we analyzed the short-time behavior of a
constrained granular system subjected to vibrational dynam-
ics. The vibrations are induced by harmonic variation of the
force exerted on a free retaining wall between zero and a
maximum force. The system as a whole has a single degree
of freedom represented by the horizontal position of the free
wall. This system involves a jammed state separating passive
�loading� and active �unloading� states. The contact dynam-
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FIG. 16. �Color online� Scaling of the maximum displacement
�xmax with the force amplitude fmax.
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FIG. 17. �Color online� Scaling of the maximum displacement
�xmax with gravity g.
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FIG. 18. �Color online� Scaling of the maximum displacement
�xmax with loading parameters from simulations with different val-
ues of the frequency � �squares�, the force amplitude fmax �circles�,
and the gravity g �diamonds� for the mass of the wall mw �star� and
for 400 particles �*�. The inset shows the plot near the origin.
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ics simulations were conducted with a rather small number
of polygonal grains allowing for a systematic study of the
dynamics and compaction of the material by varying the fre-
quency and averaging over several configurations each time.
By construction, our system is devoid of elastic elements
and, hence, the behavior is fully governed by collective grain
rearrangements.

In the loading phase, the reaction force �exerted by the
grains on the free wall� rises almost linearly with the dis-
placement of the free wall, but it increases considerably at
the end of this phase in transition to the jammed state. This
force enhancement features the jamming transition compared
to the rest of the passive state. The reaction force decreases
then in the jammed state, thus balancing exactly the driving
force, until the latter is low enough for the grains to push the
free wall away under the action of their own weights. This
unjamming process occurs smoothly and the reaction force
increases only slightly but exponentially during the unload-
ing phase. We showed that a rough expression of the reaction
force as a function of the displacement of the free wall with

respect to the jamming position provides a good prediction
of the dynamics except at the jamming and unjamming
transients.

We used dimensional analysis to scale the dynamics with
the frequency � of oscillations. It was shown that the data for
frequencies ranging from 1 to 60 Hz collapse by scaling the
displacements by the inverse square of frequency. On the
other hand, we studied both numerically and dimensionally
the scaling with loading parameters mg and fmax as well as
with the mass mw of the free wall.

We also investigated the oscillatory compaction of our
numerical samples. A small compaction occurs during un-
loading, i.e., during the extension of the sample, followed by
a smaller decompaction during loading. The compaction rate
is nearly constant for short times. It was shown that the com-
paction rate increases linearly with frequency up to a char-
acteristic frequency and then it declines nearly in inverse
proportion to frequency. The characteristic frequency was in-
terpreted in terms of the time required for the relaxation of a
packing in each period to a more compact state by collective
grain rearrangements under the action of gravity. The de-
creasing compaction rate as a function of frequency beyond
the characteristic frequency was explained by arguing that
only a partial relaxation, inversely proportional to frequency,
could occur at such frequencies.

A similar investigation is currently underway with poly-
hedral grains in three dimensions. Our preliminary results are
consistent with those presented in this paper. In view of ap-
plications to a wider range of boundary conditions or diving
modes, it is also important to consider in detail the charac-
teristic time and the influence of various parameters pertain-
ing to particle properties. Finally, long-time behavior and the
slow evolution of the compaction rate may be studied in this
framework though more numerical effort is necessary to
reach significant results in this case.
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